

4th November 2019 ASX: KIN Kin Mining NL 342 Scarborough Beach Road Osborne Park WA 6017 P +61 9 9242 2227 E info@kinmining.com.au

kinmining.com.au

CARDINIA GOLD PROJECT EXPLORATION UPDATE

Highlights:

- Spectacular high grade results from rock chip sampling around historic workings at Cardinia, including 895g/t and 277g/t gold.
- Ironstone and sulphidic sediment samples produced grades of 28.7g/t, 15.1g/t, 9.6g/t and 8.9g/t gold.
- Further grades of 56.5g/t, 27.0g/t, 22.8g/t and 21.2g/t gold produced from sulphidic quartz vein and breccia samples.
- All samples taken from within 5km of the Cardinia plant in areas with little previous drilling.
- Rock chip sampling program may be followed by geophysical surveying to assist in refining new, gold-rich VMS targets for drill testing.

Kin Mining NL (ASX: KIN or Company) is pleased to provide assay results from rock chip sampling conducted around the Cardinia area of the Cardinia Gold Project (CGP) in October. Spectacular grades were produced from samples taken close to historic workings, outside the existing Mineral Resources previously defined at the CGP. A total of 87 samples were collected, with 25% (22 samples) returning values greater than 5g/t gold. The results highlight the prospectivity of areas largely untested by drilling within 5km of the proposed CGP processing plant (Figure 1).

The rock chip sampling program is part of Kin's exploration strategy following the release of the Pre-Feasibility Study (PFS) for the CGP (refer ASX announcement 30 August 2019). It involves the use of surface sampling and geophysical surveying to identify and prioritise drill targets, including in areas under shallow cover. The objective of the exploration strategy is to identify new, higher value deposits with potential for inclusion in the CGP mine plan, replacing material currently scheduled to be trucked from the Mertondale area from year three.

Two dominant mineralisation styles were sampled across the Cardinia area in October, confirming the gold rich Volcanogenic Massive Sulphide (VMS) geological model developed by the Kin geology team.

Notably, a number of high grade gold assays were produced from ironstone, sulphidic sediment, and chert located on the contacts of mafic and felsic rocks (28.7g/t, 15.1g/t, 9.6g/t and 8.9g/t gold). Refer Table 1 and Figure 2.

These samples showed VMS style mineralisation assays including silver (up to 5.86g/t), copper (up to 0.08%), bismuth (up to 100ppm), antimony (up to 103ppm), tungsten (up to 463ppm) and zinc (up

to 0.14%). The results highlight the area's prospectivity for gold-rich VMS deposits, particularly around the Snowden Well (Figure 2) and Eagle prospects.

Additionally, high grade gold assays were produced from quartz vein and breccia samples at Comedy King (895g/t and 277g/t), Nevertire (27g/t), Black Chief South (22.8g/t), Golden Dolerite (21.2 g/t and 11.3g/t) and Eagle (56.5g/t and 9.5g/t). Refer Table 2.

These samples also displayed a characteristic VMS mineralisation signature with high levels of silver (up to 39.6g/t), bismuth (up to 202ppm), copper (up to 0.24%), lead (up to 0.2%), antimony (up to 195ppm), tellurium (up to 79ppm) and zinc (up to 0.35%). The veins and breccias are interpreted to represent feeder zones beneath VMS horizons and later epithermal veining, similar to that seen at Bruno-Lewis.

Notably, all 87 samples were collected within 5km of the location of the Cardinia processing plant site. This emphasises the opportunity to define additional high grade deposits within a short haulage distance of the proposed Cardinia development (Figure 1).

Kin Managing Director Andrew Munckton said: "We are building on the understanding that the Cardinia area is a mineralised system in the VMS style.

"The now widespread areas of high grade gold mineralisation, across a number of stratigraphic positions, enriched in base metals and other indicator minerals such as bismuth, antimony, tellurium and tungsten has led us to believe that we are dealing with a significant, gold-rich VMS mineralised system in the Cardinia area.

"This is a very encouraging step in our objective of identifying new deposits to enhance the mine plan for the Cardinia Gold Project. Gold-rich VMS deposits are highly sought after as they represent one of the highest margin deposit styles available"

Next Steps

The trial geophysical survey program currently underway at Cardinia is testing the applicability of Electro-Magnetics (EM) and Induced Polarisation (IP) to detect sulphide mineralisation associated with high grade gold mineralisation at both the Bruno-Lewis and Helens deposits.

Field work from the trial program is now complete with data being processed and interpreted by Southern Geoscience.

Further EM and IP surveys and follow up drilling programs across targets highlighted by the rock chip program will be considered following the outcomes of the trial geophysical survey.

.

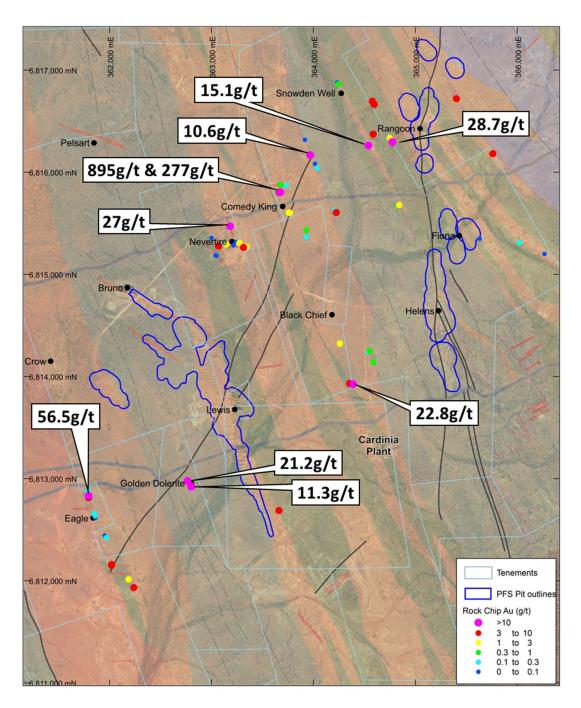
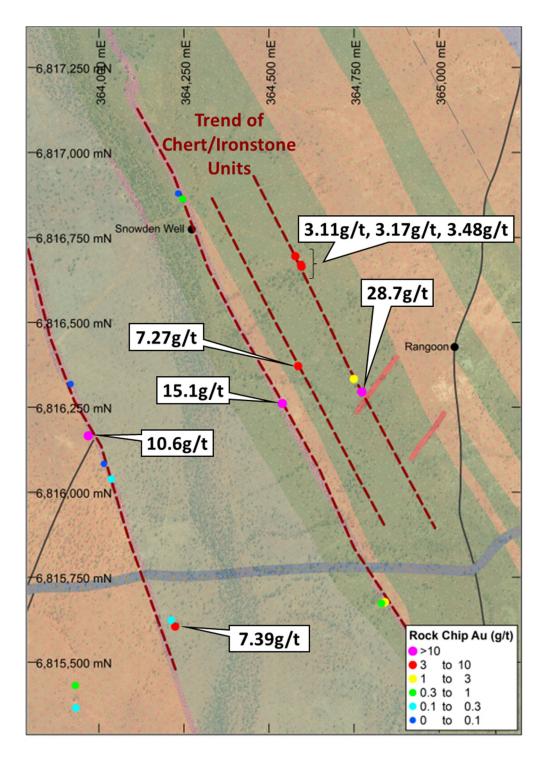


Figure 1. Cardinia geology showing locations of the Rock Chip samples collected.



Rock Chip Assays - Ironstone, Sulphides and Chert

							Se	lected E	lements	(all valu	ies in pp	m)		
Sample ID	Easting	Northing	RL	Sample Description	Au	Ag	As	Cu	Bi	Pb	Sb	Те	w	Zn
Eagle							•							
K091519	361796	6812814	411	Ironstone	0.98	2.77	514	774	1.56	11	15.3	<0.2	1.5	1242
K091520	361795	6812813	411	Ferruginous Sediment	4.15	1.25	527	421	1.09	18	31.8	<0.2	1.2	1343
K091521	361796	6812818	414	Altered Sediment	4.39	0.96	480	140	1.16	6	16.7	0.2	0.8	703
K091522	361807	6812801	413	Laminated sediment	0.19	0.37	112	142	0.15	9	9.1	0.2	0.2	36
K091524	361858	6812638	414	Goethitic mullock	0.11	0.39	345	355	0.37	21	8.4	<0.2	2.9	598
K091525	361849	6812660	413	Brecciated Sediment	0.24	0.48	184	172	5.9	49	103	0.3	1.9	1023
K091526	361859	6812618	415	Chert	0.02	0.32	64	88	0.12	11	21.7	<0.2	0.2	122
K091527	361952	6812443	411	Goethitic Sediment	0.09	0.15	196	278	0.43	5	3.8	<0.2	0.4	310
K091528	361969	6812422	410	Ferruginous mullock	0.23	0.2	489	140	1.51	21	11	<0.2	1.8	872
K091530	362019	6812150	410	Ferruginous sediment	4.86	0.81	705	891	2.61	517	45.4	0.3	0.8	478
K091533	361784	6812887	407	Sediment mullock	0.17	1.02	142	114	0.85	9	5.7	<0.2	1.9	202
K091534	361795	6812834	406	Goethitic sediment	9.57	1.71	788	283	4.53	26	58.5	0.5	2.4	1408
Comedy Kir					1									
K091541	363771	6815601	418	Sulphidic sediment	1.63	2.09	236	143	0.52	53	21.8	0.5	17.8	608
K091542	363759	6815602	419	Sulhidic sediment	1.02	1.19	907	295	1.31	211	25.9	1.2	13.9	1012
K091545	363662	6815804	421	Ferruginous Sediment	0.33	0.41	179	96	0.72	87	45.5	0.4	10.4	247
K091546	363663	6815801	421	Ironstone & Quartz	3.44	0.11	40	43	2.37	9	3.8	1.2	13.7	163
K091540	364015	6816084	431	Ferruginous sediment	0.08	0.45	222	219	0.59	18	26.7	0.3	135	499
K091552	364037	6816039	430	Ferruginous sediment	0.19	0.45	161	250	1.69	10	25.2	0.8	155	110
K091555	364213	6815624	421	Ferruginous sediment	0.22	0.31	32	308	1.03	3	1.7	<0.2	2.1	917
K091555	364225	6815605	420	Ferruginous sediment	7.39	0.34	19	542	0.29	3	2.2	0.2	14.1	611
K091555	363917	6816318	422	Ironstone	0.07	0.22	25	72	0.25	8	3.7	0.2	3	234
Snowden W		0010510	722	lionstone	0.07	0.22	25	72	0.4	0	5.7	0.5	5	234
к091557	364233	6816879	419	Banded Chert	0.08	0.14	52	49	0.07	1	1.3	<0.2	1.4	29
K091557	364247	6816863	419	Banded Chert	0.08	0.14	163	278	1.25	17	8.1	0.2	54.5	467
K091558 K091559	364540	6816261	419	Chert/Ironstone	15.1	0.42	200	356	0.69	17	7.9	3.5	12.8	63
K091559 K091560	364586	6816371	422	Ironstone Mullock	7.27	1.32	142	301	0.09	16	6.4	2.5	12.8 22.5	125
K091561	364774	6816295	419	Ferruginous sediment	28.7	0.43	202	238	0.2	8	3.9	1.5	14.7	125
K091561 K091562	364750	6816334	420	Banded Chert	1.00	0.45	110	330	1.11	。 16	4.3	1.5	55.6	144
K091562	364831	6815673	423	Ironstone mullock	0.32	0.55	94	214	0.29	10	4.3 5.9	0.4	25	507
							94 970			19				
K091564	364842	6815677	423	Ironstone mullock	2.08	0.99		689	0.66	42	18.5 7	11.1 0.4	11.2 7.5	221 266
K091590	364596	6816664	425	Sulphidic sediment	3.11		108	466	0.43					
K091591	364594	6816669	427	Banded Chert	3.17	0.63	103	81	0.57	13	5.2	0.6	10.4	70
K091592	364578	6816695	427	Banded Chert	3.48	1.26	118	319	0.54	17	9.3	1.2	2.4	263
Rangoon	265200	C01C700	427	Durite rich Chart	2.22	17	40	71	0.1	20	F 2	-0.2	1.2	55
K091565	365398	6816709	427	Pyrite-rich Chert	2.33	1.7 1.57	40	71	0.1	30	5.2	<0.2		
K091567	365403	6816719	425	Pyrite-rich Chert	5.74	1.57	140	218	1.15	100	23.8	2.4	9.7	309
Nevertire	262004	015257	405	Las a star a star a star la sta	0.02	-0.05	50	20		4	1.0	0.0	4.2	12
K091570	363001	6815357	405	Ironstone Mullock	0.03	< 0.05	56	30	1.44	1	4.6	0.6	4.3	12
K091574	363112	6815297	409	Sulphidic sediment	0.21	0.79	1043	439	5.3	5	5.9	2.5	5.7	13
K091575	363113	6815295	409	Sulphidic sediment	0.07	0.38	865	704	0.94	5	15.2	6.2	181	92
K091583	363189	6815461	418	Quartz & Ironstone	0.21	0.3	196	66	3.29	9	33.3	2.4	463	101
Fiona	200022	6045000	440	Quanta 8 Juan 1	0.00	0.01	25	60	0.04	-	10		4.0	60
K091596	366023	6815309	419	Quartz & Ironstone	0.26	0.21	35	69	0.04	5	1.9	<0.2	1.9	69
K091597	365631	6815349	420	Ironstone Mullock	0.06	0.14	167	230	0.16	35	7	0.6	29.3	269
Lewis South		6042622	444	Las a star a star a star d	0.07	F 66	2242	674	00.00	F 4	24.2	0.5		700
K091598	363661	6812688	411	Ironstone Mullock	8.87	5.86	2310	674	99.63	51	21.3	0.5	5.4	726
Black Chief		604 1000	4			0.00		407	0.00	4-				007
K091603	364540	6814239	417	Ironstone Mullock	0.21	0.22	60	127	0.86	15	4.1	0.3	9	237
K091604	364588	6814140	418	Ironstone Mullock	0.32	0.39	410	457	12.65	23	9.6	0.7	13.4	609

Table 1. Samples taken that represent the VHMS style mineralisation. Gold values greater than 5g/t are in bold, other element values in bold considered strongly anomalous.

Figure 2. Rock Chip samples from the Snowden Well area. This area has been highlighted as particularly prospective for VMS mineralisation, due to the presence of a number of mineralised chert and ironstone units on the contacts of the bimodal volcanic sequence.

Rock Chip Assays – Epithermal and Feeder zone-related mineralisation

Sample ID	Easting	Northing	RL	Sample Description			Se	lected E	lements	all valu	ies in pp	m)		
Sample ID	Easting	Northing	RL	Sample Description	Au	Ag	As	Cu	Bi	Pb	Sb	Те	w	Zn
Eagle		-				-	-	-	-		-	-	-	
K091518	361794	6812831	416	Brecciated vein	56.5	17.7	1818	95	3.44	50	195	1	9.2	3546
K091523	361852	6812634	415	Quartz vein	0.03	0.25	95	58	2.31	5	3.5	<0.2	7.2	81
K091529	362020	6812158	410	Quartz vein	7.29	0.71	254	152	3.38	410	26.5	0.3	0.6	220
K091531	362187	6812013	402	Felsic volcs	2.92	0.76	95	91	2.51	69	8.3	<0.2	1	159
K091532	362238	6811933	400	Goethitic felsic	9.54	1.26	79	116	2.4	128	8	<0.2	0.8	139
Golden Do	lerite	-				-		-				-	-	
K091535	362765	6812975	408	20cm quartz vein	21.2	7.46	1579	1420	1.85	1996	170	5.7	26.7	875
K091536	362777	6812973	409	Felsic Volcs	0.36	0.74	162	258	0.46	212	5.6	<0.2	15	45
K091537	362803	6812930	407	Quartz mullock	0.90	1.29	1070	831	0.78	416	19.4	0.8	14.7	245
K091538	362800	6812920	408	Quartz mullock	11.3	3.88	1621	706	9.61	575	136	12.2	57	233
Comedy Ki	ng			1	T									
K091539	363933	6815365	414	Pisolitic laterite	0.14	0.21	86	31	0.74	8	8.3	0.9	17.8	29
K091540	363931	6815431	414	Pyrite-rich basalt	0.76	1.9	241	45	1.13	44	16.8	1.5	8.5	202
K091543	363675	6815803	421	5cm quartz vein	895	4.66	167	73	42.2	79	48.3	25.4	21.4	276
K091544	363674	6815802	421	5cm quartz vein	277	39.65	131	70	202	68	29.4	78.8	39.8	363
K091547	363675	6815877	428	0.5m Quartz vein package	0.46	0.22	60	142	4.59	13	2.6	4.9	16.8	159
K091548	363677	6815876	427	0.5m Quartz vein package	0.67	0.3	86	144	6.18	15	3	11.9	13.7	213
K091549	363737	6815870	430	Quartz mullock	0.16	0.06	106	120	0.15	3	2	<0.2	22.6	294
K091550	363737	6815867	430	20cm Quartz vein	0.08	<0.05	177	211	0.14	3	1.8	<0.2	6.4	384
K091551	363969	6816166	433	Quartz vein	10.6	1.86	227	92	9.92	66	36.7	1.8	25.5	643
Rangoon		1		1	r	1		1				1	I	
K091566	365398	6816711	427	Pyrite-rich Felsic	0.87	1.2	48	101	0.27	79	5.7	0.3	4.2	86
K091593	365756	6816183	426	Quartz mullock	0.64	3.83	60	89	0.12	46	3.7	0.4	2.5	26
K091594	365760	6816181	425	SW-dipping Quartz vein	5.13	0.69	49	72	0.58	49	5.1	0.4	1.5	36
Nevertire				1 .		-							_	
K091568	363050	6815181	370	Bucky quartz	0.08	0.11	49	36	0.62	6	13.8	0.3	5.6	11
K091569	363039	6815187	377	Bucky quartz	0.05	<0.05	10	15	0.14	2	2.1	<0.2	1	5
K091571	363070	6815276	401	Pyrite-rich Felsic	3.45	3.36	1409	698	1.69	33	79.5	3.1	523	43
K091572	363076	6815281	406	Pyrite-rich Felsic	0.13	0.36	1795	1788	85.6	42	71.9	52.2	432	52
K091573	363110	6815302	408	Pyrite-rich Felsic	0.03	1.31	353	316	10.3	5	7.9	2.8	17.8	4
K091576	363111	6815303	410	Pyrite-rich Felsic	0.01	0.43	217	136	4.58	4	4.1	0.9	10.2	7
K091577	363146	6815292	414	S-dipping Quartz vein	2.11	0.56	2383	208	5.91	22	10.2	7.8	1783	25
K091578	363216	6815285	412	10cm quartz veins	0.01	0.1	241	195	2.79	10	10.9	2.3	79.8	51
K091579	363274	6815305	413	Quartz vein	2.42	0.39	162	121	0.38	13	41.4	0.4	761	75
K091580	363239	6815317	414	Quartz vein	0.03	0.19	113	63	3.21	31	47.9	1.5	89	87
K091581	363345	6815270	410	Quartz mullock	1.79	0.14	23	58	0.63	6	5.1	0.4	37.3	50
K091582	363314	6815262	412	Quartz mullock	9.12	0.33	26	73	2.12	29	19.6	1.4	25.7	63
K091584	363179	6815482	419	Sulphide-rich Quartz	0.09	0.09	56	41	0.47	3	12.6	0.5	98.2	16
K091585	363182	6815469	417	70cm quartz vein	27.0	0.94	212	129	2.17	9	25	2.2	272	86
K091586	363179	6815488	420	50cm Quartz vein	0.23	0.11	272	353	4.98	5	172	0.9	550	284
Fiona	266267	6015201	420	Bucky quarta	0.07	0.17	10	02	0.04		0.0	<0.2	10	124
K091595 Black Chief	366267	6815201	420	Bucky quartz	0.07	0.17	18	83	0.04	4	0.9	<0.2	13	131
		6012022	410	Quarta & Ironatara	22.0	0.00	47	215	15.2	24	0.4	07	2.1	272
K091599	364389	6813923	418	Quartz & Ironstone	22.8	8.96	47	315	15.3	24	9.4	0.7	3.1	373
K091600	364354	6813931 6814331	418	Quartz & Ironstone	6.78	2.19	60 172	262	22.4	22	7.6	0.7	2.1	77
K091601	364260	6814321 6814340	415	Quartz & Ironstone	2.88	0.96	173	726	15.8	30	7.3	1.4	7.9	633
K091602	364551	6814249	418	Quartz vein	0.39	0.45	62	40	3.94	7	9.4	0.6	6.3	69

Table 2. Samples taken that represent the feeder style vein and disseminated mineralisation. Gold values greater than 5g/t are in bold, other element values in bold considered strongly anomalous.

-ENDS-

For further information, please contact:

Investor enquiries

Media enquiries

Andrew Munckton Managing Director, Kin Mining NL +61 8 9242 2227 Michael Vaughan Fivemark Partners +61 422 602 720

About Kin Mining NL

Kin Mining NL (ASX: KIN) is a West Australian based gold development and exploration company. Kin's key focus is its 100% owned Cardinia Gold Project (CGP) located in the highly prospective North-Eastern Goldfields region of Western Australia. The CGP has an 841koz¹ gold Mineral Resource defined in supergene and deeper primary mineralisation with considerable potential to grow this resource with further drilling.

¹ The company confirms that it is not aware of any new information or data that materially affects the information included in the ASX Announcement of 9 July 2019 "Bruno-Lewis Mineral Resource Update", and that all material assumptions and technical parameters underpinning the estimates in that announcements continue to apply and have not materially changed.

COMPETENT PERSON'S STATEMENT

The information contained in this report relating to exploration results relates to information compiled or reviewed by Glenn Grayson. Mr. Grayson is a member of the Australasian Institute of Mining and Metallurgy and is a full time employee of the company. Mr. Grayson has sufficient experience of relevance to the styles of mineralisation and the types of deposit under consideration, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 edition of the JORC "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves".

Mr. Grayson consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Appendix A

JORC 2012 TABLE 1 REPORT

Cardinia Gold Project – Rock Chip sampling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The samples are taken from outcrop where possible. Samples are also taken from in situ float material or waste rock around historic workings, where outcrop is not present. Care is taken to ensure all samples are representative of the medium being sampled. For example, if a 1m sediment unit is being sampled, a channel sample will be taken across the entire unit.
	Aspects of the determination of mineralisation that are Material to the Public Report.	
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling is reported in this release.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling is reported in this release.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All rock chip samples are inspected by the sampling geologist and logged for lithology, alteration, mineralisation, veining, and structural fabric. This is a combination of qualitative and quantitative data.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	
	The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	No duplicates are taken for rock chip sampling. Sample sizes are approximately
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	3kg, this is considered appropriate for the material being sampled.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All rock chip samples have been submitted to Intertek Genalysis (Perth) for analysis by 50g Fire assay, with multi-element analysis via a 4-acid digest for a 48-element suite. Sample preparation included oven drying (105°C), crushing (<6mm), pulverising (P90% passing 75µm). Blanks and standards are inserted by the lab at
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	a minimum rate of 1 in 50. Lab repeats are performed for samples with particularly high gold values. Due to the nature and intended uses of this data, this QAQC procedure is intentionally less rigorous than that used for drilling samples.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Sample logging data is loaded to the company Datashed database in csv format. Assay data is loaded to the database as the unaltered csv file provided by the lab. No adjustments have been made to assay data.
	The use of twinned holes.	No adjustments have been made to assay data.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	
	Discuss any adjustment to assay data.	
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sample location was recorded at the time of sampling using a handheld GPS. Location data was collected in the GDA94 Zone51 grid coordinate system.
	Specification of the grid system used.	
	Quality and adequacy of topographic control.	
Data spacing and	Data spacing for reporting of Exploration Results.	Not applicable.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral	

Criteria	JORC Code explanation	Commentary
	Resource and Ore Reserve estimation procedure(s) and classifications applied.	
	Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Not applicable.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	Rock chip samples are collected in pre-numbered calico bags. The samples are then packed into labelled Bulka bags and stored securely on site until ready for dispatch. They are then stored in a secured yard in Leonora prior to being transported to the sample preparation laboratory in Kalgoorlie.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No reviews have been conducted into this rock chip sampling procedure

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Cardinia Project, 35-40km NE of Leonora is managed, explored and maintained by KIN, and constitute a portion of KIN's Leonora Gold Project (LGP), which is located within the Shire of Leonora in the Mt Margaret Mineral Field of the North Eastern Goldfields. The Helens and Rangoon area includes granted mining tenements M37/316 and M37/317, The tenements are held in the name of Navigator Mining Pty Ltd, a wholly owned subsidiary of KIN. The Bruno-Lewis and Kyte areas includes granted mining tenements M37/86, M37/227, M37/277, M37/300, M37/428 and M37/646. The tenements are held in the name of Navigator Silver KIN. The following royalty payment may be applicable to the areas within the Cardinia Project's Bruno and Lewis areas that comprise the deposits being reported on: Gloucester Coal Ltd (formerly CIM Resources Ltd and Centenary International Mining Ltd) in respect of M37/86 - 1% of the quarterly gross value of sales for gold ounces produced, in excess of 10,000 ounces. Sprott - 1.5% NSR on first 100,000Oz Au
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	At Cardinia, from 1980-1985, Townson Holdings Pty Ltd ("Townson") mined a small open pit over selected historical workings at the Rangoon prospect. Localised instances of drilling relating to this mining event are not recorded and are considered insubstantial and immaterial for resource modelling Companies involved in the collection of the majority of the gold exploration data since 1985 and prior to 2014 include: Thames Mining NL ("Thames") 1985; Mt Eden Gold Mines (Aust) NL (also Tarmoola Aust Pty Ltd "MEGM") 1986-2003; Centenary

Criteria	JORC Code explanation	Commentary
		International Mining Ltd ("CIM") 1986-1988, 1991-1992; Metana Minerals NL ("Metana") 1986-1989; Sons of Gwalia Ltd ("SOG") 1989, 1992-2004; Pacmin Mining Corporation ("Pacmin") 1998-2001, and Navigator Resources Ltd ("Navigator") 2004-2014.
		In 2009 Navigator commissioned Runge Limited ("Runge") to complete a Mineral Resource estimate for the Bruno, Lewis, Kyte, Helens and Rangoon deposits. Runge reported a JORC 2004 compliant Mineral Resource estimate, at a cut-off grade of 0.7g/t Au, totalling 1.45Mt @ 1.3 g/t au (61,700 oz Au) for Helens and Rangoon, and totalling 4.34Mt @ 1.2 g/t au (169,700 oz Au) for Bruno, Lewis and Kyte.
		A trial pit (Bruno) was mined by Navigator in 2010, and a 'test parcel' of ore was extracted and transported firstly to Sons of Gwalia's processing plant in Leonora, and finally to Navigator's processing plant located at Bronzewing, where approximately 100,000 tonnes were processed at an average head grade of 2.33 g/t au (7,493 oz Au).
Geology	Deposit type, geological setting and style of mineralisation.	The Cardinia Project area is located in the central part of the Norseman-Wiluna Greenstone Belt, which extends for some 600km on a NNW trend across the Archean Yilgarn Craton of Western Australia.
		Locally within the Cardinia Project area, the stratigraphy consists of intermediate, mafic and felsic volcanic and intrusive lithologies and locally derived epiclastic sediments, which strike NNW, dipping steep-to-moderately to the west. Structural foliation of the areas stratigraphy predominantly dips steeply to the east but localised inflections are common and structural orientation can vary between moderately (50-75°) easterly to moderately westerly dipping.
		Mineralisation at Helens is controlled by a cross-cutting fault, hosted predominantly in mafic rock units, adjacent to the felsic volcanic/sediment contacts. The ore zones are associated with increased shearing, intense alteration and disseminated sulphides. Minor supergene enrichment occurs locally within mineralised shears throughout the regolith profile.
		Mineralisation at Bruno-Lewis is largely controlled by the stratigraphic contact between basalt and felsic volcanics. Gold is associated with significant sulphide mineralisation in the sediments and volcaniclastics between the 2 volcanic units. Gold Is also hosted within shallowly NE-dipping lodes, associated with increased potassic-sericite alteration and quartz stockwork veining. These lodes also host the mineralisation at Kyte. Substantial supergene mineralisation sits above both styles of mineralisation.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No material drilling information is being reported in this release. Rock chip sampling data is used for exploration targeting purposes only. Sample location data, as well as a brief sample description and key assay data is recorded in the table.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No cutting of grades or weighting techniques have been applied to this data.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Not applicable, rock chip sampling is point data.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being	Appropriate maps are included in the main body of this report.

Criteria	JORC Code explanation	Commentary
	reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Public reporting of exploration results by KIN and past tenement holders and explorers for the resource areas are considered balanced. All rock chip assays, regardless of grade are reported in the table.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other data is relevant to these exploration results.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	KIN intend to continue exploration and drilling activities at in the described area, with the intention to increase the project's resources.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	